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Summary 
The relevance of the antibody-dependent cellular inhibition (ADCI) of Plasmodium falciparum 
to clinical protection has been previously established by in vitro studies of material obtained during 
passive transfer of protection by immunoglobulin G in humans. We here report further in vitro 
investigations aimed at elucidating the mechanisms underlying this ADCI effect. Results ob- 
tained so far suggest that (a) merozoite uptake by monocytes (MN) as well as by polymorphonuclear 
ceils has little influence on the course of parasitemia; (b) the ADCI effect is mediated by a soluble 
factor released by MN; (c) this or these factors are able to block the division of surrounding 
intraerythrocytic parasites at the one nucleus stage; (d) the critical triggering antigen(s) targeted 
by effective Abs would appear to be associated with the surface of merozoites, as opposed to 
that of infected red blood cells; (e) the MN receptor for Abs effective in ADCI is apparently 
Fc3'RII, and not ILl; (f) MN function is up- and down-regulated by interferon-3' and interleukin 
4, respectively; and (g) of several potential mediators released by MN, only tumor necrosis factor 
(TNF) proved of relevance. The involvement of TNF in defense may explain the recently de- 
scribed increased frequency of the TNF-2 high-expression promoter in individuals living in en- 
demic regions despite its compromising role in severe malaria. 

1 I T he asexual blood stages (ABS) of malaria parasites are 
.i. the only stages responsible for the pathology of the dis- 

ease. They are also the most accessible to investigation, be- 
cause they are the only ones whose cultivation is easy. These 
stages have therefore been the subject of most of the studies 
of malaria aimed at understanding the basis of protective im- 
munity for vaccination purposes. Based on passive transfer 
of Abs, there is considerable in vivo evidence that IgG con- 
stitutes an effident arm of the immune system against erythro- 
cytic stages in humans infected with Plasmodium fakiparum 
(1-3), in South American monkeys infected with P.fakiparum 
(4), and in a number of primate and rodent models (for re- 
view see reference 5). How these Abs act upon ABS, how- 
ever, is far less dear. A number of hypotheses or beliefs have 
dominated the past decade, among which the inhibition of 
merozoite invasion is the most popular, together with a num- 
ber of alternative hypotheses such as the inhibition of cytoad- 

I Abbreviations used in this paper: ABS, asexual blood stage; ADCC, 
antibody-dependent cellular cytotoxidty; ADCI, antibody-dependent cel- 
lular inhibition; BHA, butylated hydroxyanisole; CL, chemiluminescence; 
CLI, CL index; DCLI, delta CLI; FOR, free oxygen radical; HI-IgG, 
hyperimmune [gG; L-NMMA, NG-monomethy|-L-arginine; MLI, max- 
imum light intensity; MN, monocyte; N-IgG, control IgG; SIRBC, 
schizont-infected RBC; SGI, specific growth inhibitory index. 

herence (thought to lead to the destruction of schizonts in the 
spleen), the inhibition of schizont-infected RBC (SIILBC) 
rosetting, the inhibition of merozoite dispersal, and opsoni- 
zation of SIRBC. 

Our initial observation that Abs from individuals with ac- 
quired protective immunity against ABS had no direct an- 
tiparasite effect in vitro led us to investigate other modes of 
action. We reported an Ab-dependent cellular cytotoxicity 
(ADCC)-like effect exerted by blood monocytes (MN), which 
was named Ab-dependent cellular inhibition (ADCI) to reflect 
the fact that the readout was an inhibition of parasite growth. 
The relevance of the MN-mediated ADCI observed in vitro 
was further validated by close in vivo/in vitro correlations: 
A strong ADCI effect could be elicited only by protective 
Abs, i.e., Abs whose clinical effect had been demonstrated 
by passive transfer in humans. Conversely, the preexisting 
Abs that proved clinically ineffective in the same individuals 
upon the same strains did not promote ADCI (6). The con- 
cept of Abs being effective by cooperation with effector cells 
was further supported by isotype studies showing a clear corre- 
lation between the ratio of cytophilic/noncytophilic Abs and 
the clinical status of protection (7). 

In parallel with studies aimed at using this assay to iden- 
tify protective antigen(s) (8), we have focused on the study 
of the ADCI mechanism itself. The present report summa- 

409 J. Exp. Med. �9 The Rockefeller University Press ~ 0022-1007/95/08/0409/10 $2.00 
Volume 182 August 1995 409-418 



rizes these results and markedly advances our understanding 
of how cell-Ab cooperation acts in reducing P. fakiparum in- 
traerythrocytic replication. Results show that A D C I  is de- 
pendent on IgG binding to M N  via their Fc 'yRII receptors, 
is triggered by a merozoite surface component ,  is mediated 
by soluble factors released by MN,  and acts on young in- 
traerythrocytic parasites. 

Materials and Methods 
Sera and IgG Preparations. The pool of hyperimmune (HI) 

African IgG, previously found to confer passive protection upon 
transfer (3), was purified from 180 pooled sera from protected indi- 
viduals living in the Ivory Coast (6). In addition, 15 HI individual 
sera were collected from African adults living in a P. fil- 
cilmrum-endemic area of the Ivory Coast. These subjects are re- 
ferred to as "protected" since they have reached a state of clinical 
immunity to malaria (9). 

Control sera were obtained from healthy French adults with no 
history of malaria. For all individual sera, the IgG fraction was 
prepared using a GF05-Trisacryl column followed by a DEAE- 
Trisacryl column (Industrie Biologique Francaise, Villeneuve la 
Garenne, France). The IgG preparation was then extensively dia- 
lyzed against PBS, pH 7.4, for 48 h and finally against RPMI 1640 
medium for 24 h. 

Parasites and Culture. The P.fakiparum African strains used were 
Uganda Palo Alto (FUP/C), NF54, and FCIP150 (8). Parasite blood 
stages were cultivated in RPMI 1640 (GIBCO BRL, Gaithersburg, 
MD) supplemented with 10% human serum (10). When required, 
parasites were synchronized by repeated sorbitol treatment (11). 
Schizonts were enriched by flotation on plasmagel (12). 

Merozoite Preparation. Merozoites were purified according to 
the method described by Mrema (13). Highly synchronized schizonts 
were concentrated on plasmagel and resuspended at 0.5% hemato- 
crit in RPMI 1640 10% human serum. Every 4 h the supernatant 
was collected after centrifugation of the culture at 300 g for 3 rain. 
The pellet was cultivated again with fresh medium for another 4 h, 
while the supernatant was submitted to a second centrifugation 
at 1,200 g for 3 rain and then passed through negatively charged 
nylon membranes (Versapor; Gelman Sciences, Inc., Ann Arbor, 
MI). Merozoites obtained after Versapor filtration were centrifuged 
at 3,000 g for 20 min and resuspended in RPMI 1640. For most 
experiments, this suspension was supplemented with 10% DMSO 
(Sigma Chemical Co., St. Louis, MO) and cryopreserved in liquid 
nitrogen, after it was established in parallel experiments that fresh 
and cryopreserved preparations had a similar effect in our assays. 

Preparation of Effector Cells. Blood MN and polymorphonuclear 
cells (PMN) were prepared from healthy donors with no history 
of malaria. Mononuclear cells were separated on Ficoll-Hypaque 
(Pharmacia LKB, Uppsala, Sweden) density gradients (14). The 
number of MN in the cell suspension (obtained from the upper 
phase of the gradient) was estimated by the nonspecific esterase 
stain (15). MN were then isolated by adherence to plastic in 96- 
well plates (Nunc, Roskilde, Denmark) as described (6). The lower 
phase of the gradient was used to prepare PMN. RBC were sepa- 
rated by sedimentation using a dextran solution: 10 ml of cell sus- 
pension in Hanks' buffer (GIBCO BRL) mixed with 3 ml of Dex- 
tran T 500 (Pharmacia LKB). After a 30-min incubation at 37~ 
the supernatant was centrifuged at 200 g for 10 min at 4~ The 
cell pellet was resuspended in 8.3% ammonium chloride solution 
and incubated for 10 rain at 4~ thereby lysing the remaining 

RBC. PMN were collected by centrifugation, washed twice, and 
resuspended in Hanks' buffer. 

Treatment of MN with IFN- T or 11_,4. When indicated, MN were 
cultivated for 24 or 48 h in the presence of 100 IU/ml human rlFN-3' 
(supplied by Dr. Virelizier, Pasteur Institute, Paris) or for 48 h in 
the presence of 100 IU/ml I1r (Sigma Chemical Co.). IFN-~ and 
1I,-4 were removed from the culture medium (RPMI 1640 plus 10% 
human serum) by several washings in RPMI 1640 before using the 
MN in the ADCI assay. 

ADCI Assay. In the wells containing m2 x 10 s adherent 
MN, a P. fakiparum-synchronous culture (0.4-0.7% parasitemia) 
suspension in RPMI 1640 was added (100 #l/well, hematocrit 2.5%) 
so as to obtain a ratio of 200 RBC/1 MN. The culture medium 
(RPMI 1640 plus 10% human serum) was supplemented with ei- 
ther purified HI-IgG (at 2 mg/ml) or control IgG (N-IgG, at 1.2 
mg/ml). These concentrations correspond to 10% of the initial 
IgG concentration in the donor's serum. The other control cul- 
tures were HI-IgG without MN and N-IgG without MN. When 
indicated, the culture medium was supplemented with one (or more) 
of the following reagents whose effect upon ADCI activity was 
assessed: 30 ng/ml rTNF-a (Rhrne Poulenc, Paris, France); rabbit 
anti-TNF-c~ serum diluted 1:1,000 (gift from Dr. C. Rougeot, 
Pasteur Institute, Paris, France); rabbit anti-IL-6 serum diluted 1:100 
(Seralab, Crawley Down, UK); mAb 197 directed to FeyRI or mAb 
4.3 directed to Fcq'RII (both purchased from Medarex, Inc., West 
Lebanon, NH, and used at 20 #g/ml); goat anti-mouse Ig diluted 
1:250 (Cappel, West Chester, UK); butylated hydroxyanisole (BHA) 
tested at 30 and 50 raM; butylated hydroxytoluene (30 and 50 mM); 
superoxide dismutase/catalase (6,000 and 12,000 IU/ml); 2.5 mM 
NC-monomethyl-r-arginine (t-NMMA). In these cases control 
cultures were supplemented with the same reagents. 

In each experiment the initial parasitemia was *0.5% of syn- 
chronous schizonts and generally reached 5-12% after 96 h of cul- 
ture. 50 # of fresh culture medium was added to each well after 
48 and 72 h. 

The specific growth inhibitory index (SGI), which takes into 
account the possible inhibition induced by cells or Abs alone or 
in presence of test reagents, included as controls in each experi- 
ment, was calculated as follows: SGI = 100 x [1 - (percent 
parasitemia with MN and HI-IgG/percent parasitemia with HI- 
IgG)/(percent parasitemia with MN/percent parasitemia with 
N-IgG)]. 

It may be important to stress here that the MN function in ADCI 
was found to be dependent upon several subtle factors, such as the 
water used to prepare RPMI 1640. For example, high-purity Milli-Q 
water (Millipore Corp., Bedford, MA), although adequate for cul- 
turing P.fakiparum blood stages, did not promote an ADCI effect 
by MN, whereas water containing traces of minerals such as double- 
distilled water or commercially available mineral water such as 
VOLVIC gave consistently good MN function. Improved and/or 
more consistent function of MN in ADCI could be obtained by 
coating the culture wells with fibronectin (i.e., coating with autol- 
ogous plasma from the MN donor followed by washing with RPMI 
1640). MN from subjects with a viral infection (e.g., influenza) 
were frequently able to induce some degree of nonspecific (non-IgG- 
dependent) inhibition of parasite growth, which prevented to some 
extent the observation of an additional IgG-dependent effect (how- 
ever, this effect is taken into account by calculation of the SGI). 
Therefore, MN from donors suspected of having a viral infection, 
recovering from one, or who had a fever in the past 8 d were syste- 
matically avoided. 

Two-step ADCI with Short-term Activation of MN. The two-step 
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ADCI was performed by (a) a short incubation of MN with Ig 
and parasites, followed by (b) the transfer of the supernatant to 
a standard P. fakiparum erythrocytic culture without MN and 
without Abs. In some experiments this was done after 24 h of a 
standard ADCI assay performed as described above. In other ex- 
periments, adherent MN were cocultured in the presence or ab- 
sence of HI-IgG with either purified P. fakiparum merozoites at 
a ratio of five merozoites per MN, synchronized P.fakiparum ring-in- 
fected RBC (at 10% parasitemia), or synchronized P. fakilaarum 
SIRBC (at 10% parasitemia). Supernatants were collected after 2 
or 18 h of culture. 

In all cases, supernatants were centrifuged at 2,000 rpm, filtered 
through 0.22-/~m membranes (Millex-GV; Millipore, Guyancourt, 
France), and added immediately, at a concentration of 50% with 
fresh culture medium, to P. falciparum-asynchronous cultures (par- 
ticular care was taken to reduce to a minimum the presence ofleu- 
kocytes in the RBC preparation used for this second culture). Each 
supernatant was tested in duplicate. At 36 h of culture, 1 mCi of 
[3H]hypoxanthine (Amersham International, Little Chalfont, UK) 
was added to each well. Cells were harvested after 48 h of culture, 
and 3H uptake was estimated by counting in a liquid scintillation 
counter (Betaplate; LKB, Turku, Finland). 

Phagocytosis Assay. This assay has been previously described in 
detail (16, 17). Briefly, 106 MN or PMN were allowed to adhere 
to 13-ram coverslips in multiwell culture plates for i h. 107 mero- 
zoites were then added to each well in the presence of N-IgG or 
HI-IgG at 2 mg/ml in lkPMI 1640. After an incubation of 45 min 
at 37~ the coverslips were washed twice, fixed in methanol, and 
Giemsa stained. The rate of phagocytosis was evaluated by counting 
the number of ceils that had ingested one or more P. fakiparum 
merozoites per 500 MN, with each test performed in duplicate. 

Measurement of Free Oxygen Radical (FOR) Production. Levels 
of FOlk production induced by merozoite uptake were estimated 
using a chemiluminescence (CL) assay (18, 19). 3 x 106 
merozoites suspended in 10 #1 of HBSS were transferred to a poly- 
styrene counting tube containing 10 #1 of either control serum 
(normal human AB serum) or test serum, and samples were in- 
cubated for 20 rain at 20~ before the test. 3 x 105 of effector 
cells (MN or PMN) were transferred into the counting tubes con- 
taining either (a) 10 ~1 of the target merozoite-serum preparation; 
(b) 10 #1 of HBSS alone as a CL-negative control; or (c) 10 #1 of 
either latex or opsonized zymosan as positive CL controls. Tubes 
were incubated at 37~ with constant shaking at 120 rpm. After 
10 min, 50/~1 of the luminol test solution was added and the CL 
was measured in a photometer chamber (Biolumat LB 9500; Ber- 
thold, Widbad, Germany). For each experiment, two sera from 
healthy individuals and three sera from HI subjects were included 
as controls. 

CL values were expressed as the maximum light intensity (MLI) 
expressed in relative light units. The CL index (CLI) was calcu- 
lated as follows: CLI = [MLI (HI-IgG) - MLI (N-IgG)/MLI 
(HI-IgG)] x 100. The delta CLI (DCLI) is the difference between 
the CLI obtained in the presence of merozoites with HI serum 
and effector cells, and the CLI obtained in the presence of HI serum 
and effector cells alone. 

Results 
Possible Role of Phagocytosis of Merozoites in Reducing Para- 

site Growth. We have previously reported the existence of 
a close correlation at the individual level between clinical pro- 
tection and the presence of Abs able to mediate the uptake 

of merozoites by phagocytic ceils, measured either by micro- 
scopic examination (16, 17) or by CL assay (19). When ex- 
amining the mechanism of ADCI, one goal was thus to esti- 
mate to what extent the phagocytosis of merozoites could 
play a role in the inhibition of parasite growth. Based on 
previous experiments suggesting that PMN were not involved 
in promoting ADCI but that MN were involved (20), we 
undertook a systematic comparative investigation of the role 
of MN and PMN in the ADCI mechanism, in phagocytosis 
of merozoites, and in FOR production. Purified IgG prepa- 
rations from three HI individuals and from three controls 
were used in these assays. 

For both cell types, antimalarial Abs promoted a significant 
increase of merozoite phagocytosis, as compared with N-IgG 
(Table 1). Because the background level of phagocytosis is 
consistently higher for PMN than for MN, this resulted in 
lower net uptake values for PMN. FOR production, which 
indirectly provides an estimate of macrophage phagocytic ac- 
tivity, was also significantly increased with HI-IgG. In this 
case FOR levels were usually higher for PMN than for MN. 

However, in cell-Ab cooperation assays, only MN were 
able to influence the in vitro growth of P. fakiparum. No 
significant difference was found when PMN and P.fakiparum 
ABS were cultured with either N-IgG or HI-IgG. These results 
were surprising since parasite phagocytosis by MN as well 
as by PMN took place to a similar degree in the presence 
of HI-IgG. Merozoites, altered schizonts, and parasite debris 
were observed in the cytoplasm in both cases. The same dear- 
cut difference between MN and PMN behavior in ADCI was 
reproducible in independent experiments conducted using cells 
from six different donors. PMN were reproducibly ineffec- 
tive with or without the addition of IFN-3' 24 h before the 
assay (results not shown). These results suggested that phago- 
cytosis is unlikely to be the effector mechanism by which 
P. falciparum growth is reduced in ADCI assays. 

ADCI Effect Is Mediated by a Soluble Factor. During the 
above experiments, we consistently observed the presence of 
numerous intraerythrocytically altered parasites in smears made 
at the end of operational ADCI assays (i.e., with MN and 
HI-IgG, but not with N-IgG or PMN). The microscopic 
observation of parasites revealed the presence of uninucleate, 
picnotic, condensed parasites that have lost their vacuole and 
therefore resemble the so-called "crisis forms" described by 
TaUiafero (21). These modifications concerned only intraeryth- 
rocytic parasites, without host cell lysis. Considering the 
MN/RBC ratio of 1:200, effector cells were too scarce to 
be able to have a direct effect, i.e., by close contact with all 
damaged parasites. This suggested that the observed parasite 
alterations may be due to the release of mediators able to act 
at a distance from MN. 

To address this hypothesis, ADCI was performed in two 
successive steps in two different culture vials. In the first step, 
parasitized RBC rich in maturing schizonts were incubated 
with MN and HI-IgG, and supernatants were collected at 
24 h and filtered. In the second step, these supernatants were 
tested at dilutions of 1:2 to 1:16 in fresh complete culture 
medium for their effect upon P.fakiparum-asynchronous cul- 
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Table 1. Comparative Assessment of the Ability of MN and PMN to Mediate ADCI and Merozoite Phagocytosis, as Measured by 
Microscopy and by CL 

Monocytes Polymorphonuclears 

HI-IgG N-IgG HI-IgG N-IgG 

Merozoite phagocytosis (%) (range) 34.3 (23.4-36.7) 5.2 (4.5-5.9) 32.7 (27.7-36.4) 10.4 (8.1-13.7) 

DCLI (range) 43.5 (20-58) 1.3 (8.2-12.7) 136.3 (98-159) 19.2 (14-21) 

ADCI 
Parasitemia 1.05 (+0.45) 4.2 (-+0.3) 4.1 (-+0.8) 3.8 (+0.5) 
SGI 63% (-+ 4) - 3% (-+ 2) - 

Phagocytosis of merozoites by each cell type in the presence of purified IgG from either three HI-IgG or three N-IgG individuals is expressed as 
the percentage of cells containing at least one merozoite in their cytoplasm (merozoite phagocytosis) or as the specific increase in CL of FOR (DCLI, 
expressed in arbitrary units). The range of values obtained with each IgG preparation is indicated in brackets. For the ADCI experiments, the results 
are expressed as the final parasitemia obtained after 96 h of culture and as the SGI, calculated as indicated in Materials and Methods. All values 
represent the mean _+ SD obtained with three distinct IgG preparations. 

tures, in the absence of MN. Parasite growth was assessed 
both by analysis of thin smears at 24 and 48 h of culture and 
by inhibition of [3H]hypoxanthine uptake. 

These assays showed a concentration-dependent inhibition 
of parasite growth and of [3H]hypoxanthine uptake with 
ADCI assay supernatants (50-15% inhibition at 1/2 to 1/8 
dilution) and resulted in the appearance of picnotic in- 
traerythrocytic parasites. Control supernatants from ADCI 
performed with MN alone, with MN and N-IgG, or with 
HI-IgG alone were not inhibitory (results not shown). The 
above experiments established that direct contact between par- 
asitized RBC and MN was not required, and they suggested 
that the binding of some malarial antigen(s) to antimalarial 
Abs could trigger MN to release a mediator able to block 
P. falciparum intraerythrocytic development. 

M N  Are Triggered by Free Merozoites, Not by Infected RBC. 
To assess which stage of the intraerythrocytic cycle carried 
the critical antigen(s) necessary to trigger MN via IgG, the 
above two-step method was used. Short-term MN stimula- 
tion assays (2 h) were performed using either infected erythro- 
cytes from highly synchronized cultures (NF54 strain) at 
different times of parasite maturation or free merozoites. The 
effect of the resulting supernatants upon P.fakiparum in vitro 
growth was then assessed by incorporation of [3H]hypox- 
anthine. 

No significant inhibitory effect was found in supernatants 
from MN cultures stimulated with either fully mature schiz- 
onts and HI-IgG for 2 h or ring-infected RBC and HI-IgG 
for 2 (not shown) or 18 h (Fig. 1). In contrast, supernatants 
from MN incubated for 18 h with HI-IgG and mature SIRBC 
contained a mediator able to markedly inhibit P. falciparum 
cultures. This time period allows schizont rupture, the re- 
lease of merozoites, and their penetration into new RBC (as 
confirmed microscopically at the end of the experiment). These 

results pointed toward the merozoites, or other products 
released by rupturing schizonts, as the critical stage in trig- 
gering ADCI. To test this hypothesis, supernatants were re- 
covered from 2-h cultures with HI-IgG and purified free 
merozoites. These proved to be strongly inhibitory (Fig. 1). 
Supernatants resulting from stimulation of MN with either 
freshly prepared or cryopreserved merozoites had similar in- 
hibitory activity. Merozoites from two additional parasite 
strains (FUP/C and FCIP150) were also found to be effec- 
tive. These results suggested that merozoite surface antigens 
(or molecules contaminating our merozoite preparations) were 
the critical antigens triggering the ADCI effect. 

Figure 1. Results from the two-step ADCI assay. As a first step, MN 
were cultured for either 2 or 18 h with different developmental stages of 
P. fakiparum in the presence of African IgG. In the second step, superna- 
tants were transferred to an asynchronous P.. fakiparum culture without 
Abs and without MN. As shown, only the supernatants from MN cul- 
tures (MN) triggered by merozoites for a short time (2-h incubations) 
or rupturing schizonts (18-h incubations) in the presence of purified HI- 
IgGs are able to inhibit P. falciparum growth. In contrast, supernatants 
of MN cultured in the presence of rings or nonrupturing schizonts (SIRBC 
2-h incubations) have no effect on parasite growth. Values represent the 
mean _+ SD from two separate experiments performed in duplicate. Mz, 
merozoite. 
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ADCI Affects the Uninudeate Stage of the Erythrocytic Cycle. 
To analyze the effect of the soluble mediator released by the 
merozoite- and IgG-stimulated MN, synchronized cultures 
were started at ring stage with MN and either N-IgG or 
HI-IgG, and the relative proportion of each stage and of pic- 
notic forms was determined every 24 h for 72 h. Purified 
merozoites (unable to reinvade a RBC) were added to these 
cultures at a ratio of 10 merozoites per MN at day 0 to in- 
duce the ADCI effect rapidly, before schizont rupture. 

The low or nonrelevance of merozoite phagocytosis to para- 
site growth reduction in ADCI was supported both by the 
differential behavior of PMN versus MN in phagocytosis and 
ADCI assays and by the effect of stimulated MN superna- 
rants, which obviously rules out merozoite removal as an im- 
portant effector. This may sound surprising in view of the 
relatively high rates of merozoite uptake observed with both 
cells in the presence of Abs; however, phagocytosis was per- 
formed using purified merozoite suspensions without RBC 
and was expressed as the number of cells having phagocy- 
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Figure 2. Progressive accumulation of uninucleate picnotic parasites 
during the course of an ADCI assay. (A) HI-IgG; (B) N-IgG. Differential 
counts of rings, trophozoites, schizonts, and crisis forms are shown (ex- 
pressed as percent relative to the number of ring forms) in one ADCI 
assay performed with MN and either N-IgG or HI-IgG, and in which 
the ADCI effect was initially triggered by the early addition of purified 
merozoites (at the start of the culture). The smaller graph on the right- 
hand side represents the growth over 48 h of parasites collected at the 
end of the ADCI assay, washed, and then allowed to grow in normal cul- 
ture medium (without MN or IgG). 

the maturation of rings up to trophozoite stage was not 
markedly inhibited. However, there was a blocking effect at 
the late trophozoite stage with the accumulation of damaged 
uninucleate parasites. O f  the few remaining schizonts seen 
at 48 h, some completed their maturation and released rein- 
vading merozoites (see the proportion of schizonts at 48 h 
and of new rings at 72 h). Thus, over 72 h of culture there 
was a progressive accumulation of parasites at the uninucleate 
stage, i.e., altered trophozoites, and, in contrast, a seemingly 
more limited effect upon parasites that had reached the mul- 
tinucleate stage. The accumulation of picnotic parasites was 
reproducibly observed at the completion of all ADCI assays. 

In these experiments, the majority of, though not all, para- 
sites submitted to the IgG-dependent MN effect were pic- 
notic. We thus addressed the question of whether the ADCI 
effect could be reversed, i.e., if the remaining parasites were 
still viable, or capable of growing when the mediator was 
removed. Infected RBC were collected in 72-h ADCI cul- 
ture wells by gently resuspending them and were subcuhured 
in fresh medium with fresh RBC, without MN. Although 
the growth rate was higher using control parasites collected 
in the N-IgG ADCI assay, Fig. 2 shows that at least some 
parasites remaining in the HI-IgG ADCI assay were still viable 
and could keep growing, albeit at a slower rate. This sug- 
gested that the mediator(s) effect is reversible, or, alternatively, 
that all parasites or all stages (see above) are not equally sus- 
ceptible to its effect. 

FcTRH Is the MN Receptor Involved in ADCI. ADCC 
mechanisms imply that the Ig Fc fragment should bind to 
the MN. The ability of a given Fc receptor to be bound by 
IgG depends on the isotype of Ig involved and on the type 
of Fcy receptors expressed by the effector cell. Previous studies 
have shown a correlation between the acquisition of an- 
timalarial immunity, the results from ADCI, and the occur- 
rence of increased levels of IgG3 and, to a lesser extent, IgG1, 
two isotypes known to be cytophilic (7). Among the three 
known Fcy receptors, MN express only Fc'ytLI and Fc'yRII. 
However, Fc'yRI has been more frequently implicated in 
ADCC mechanisms against nonplasmodial targets (22). 

We used two mAbs, designated 197 and 4.3, which were 
able to bind to Fc3'RI and Fc3,KII, respectively, and which 
had a known ability to block, or compete with, the attach- 
ment of the Fc fragment to the corresponding receptor (23, 
24). These mAbs were not toxic for the culture. The use 
of these mAbs in ADCI dearly implicated Fc'yRII as the main 
receptor involved (Fig. 3). ADCI was fully reversed by the 
addition of anti-Fc3,RII, whereas Fc3/RI does not seem to 
play any role. The evidence for this is twofold: (a) in ADCI 
assays the addition of anti-Fc'yRI was ineffective; and (b) no in- 
hibition of parasite growth was obtained in direct stimulation 
assays of FcyRI using the mAb cross-linked by a second anti- 
mouse Ab, a procedure known to trigger the MN (Ravetch, 
J., personal communication). 

Modulation of MN Function by 11_,4 and IFN-% Human 
MN were first cultured alone for 12, 24, or 48 h in medium 
containing either IFN-'y or IL-4, two cytokines known to 
have up- and down-regulating effects, respectively, upon the 
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Figure 3. Reversal of the positive ADCI effect obtained with African 
IgG by an mAb directed against FcyKII (mAb 4.3) and having a blocking 
effect against this receptor. In contrast, an mAb against the Fc'yKI receptor 
(mAb 197) proved to be unable to reverse the ADCI effect. Neither mAb 
had any direct effect upon parasite growth. When the mAb 19.7 was fur- 
ther incubated with polyclonal anti-mouse Abs, a procedure known to 
activate the FcyRl transduction pathway, no ADCI effect was recorded. 
Values shown represent the mean _+ SD from three separate experiments. 

expression of Fc 7 receptors on MN (25). These MN were 
thereafter used in standard 72-h ADCI assays. In several in- 
dependent assays, IFN-q'-treated MN were found to exert 
an increased ADCI effect as compared with nontreated cells. 
The increase, which was in the order of 15-30%, was ob- 
served in 24- and 48-h samples, though not in 12-h samples, 
with no clear-cut difference between 24 and 48 h. In con- 
trast, IL-4-treated MN were no longer able to mediate ADCI, 
whereas control MN from the same donor, incubated in con- 
trol medium for the same duration, were able to mediate ADCI 
(results not shown). These results were reproduced in two 
separate experiments. 

Evidence that TNF Is a Required Mediator in ADCL To 
identify the mediator(s) that may affect the intraerythrocytic 
growth ofP. falciparum, we investigated the potential involve- 
ment of active radicals and selected cytokines known to be 
produced by MN. Of  these, only TNF-a  proved relevant. 

The differing effects of MN and PMN in ADCI did not 
support the potential involvement of oxygen radicals, since 
FOR were found to be produced in equivalent amounts by 
these two cell types (see Table 1). Nevertheless, this was fur- 
ther investigated by ADCI assays performed in the presence 
of the FOR scavengers BHA, butylated hydroxytoluene, and 
superoxide dismutase/catalase. These proved to be unable to 
block ADCI. In some of these experiments there was a rather 
slight increase of the ADCI-specific growth inhibition, pos- 
sibly because BHA neutralizes any deleterious effect of FOR 
upon the effector cells. 

We next examined a possible role of nitric oxide radicals. 
Under the conditions of the ADCI experiments performed, 
in which the arginine analogue, L-NMMA, was added at 1- to 
5-riM concentrations, no indication supporting the possible 
role of N O -  in mediating ADCI was obtained (Fig. 4). 

The potential involvement of IFN-ot, IFN-y, Ib l ,  IL-6, 
and TNF-c~ was subsequently examined in parasite growth 
assays and in ADCI inhibition assays. The direct role of IFN-et, 

Figure 4. Identification of TNF-~ as one of the soluble mediators of 
ADCI. Polyclonal rabbit Abs against TNF-~ (known to block the biolog- 
ical activity of this cytokine) were able to suppress the ADCI obtained 
with African IgG (in the presence of MN) when added at a 1:1,000 final 
dilution. This suppression could be reversed by adding human rTNF-c~ 
at a 30-ng/ml concentration. However, the same concentration of rTNF-~ 
had no direct effect upon P. fakiparum growth either with HI-IgG (HI- 
IgG + rTNF-ot) or without (N-IgG + rTNF-ot). Values represent the mean 
+ SD from three separate experiments. Polyclonal rabbit Abs specific for 
IL-6 and able to block its biological effect did not suppress ADCI. Simi- 
larly, the arginine analogue ~-NMMA was also ineffective. Values repre- 
sent the mean _+ SD from two experiments, except in the case of II,-6, 
where only one experiment was quantified. 

IFN-% or IL-1 was not supported by results from a series 
of ADCI inhibition assays performed in the presence of the 
corresponding anticytokine Abs (results not shown). Simi- 
larly, these cytokines were reproducibly ineffective in direct 
inhibition of P. falciparum growth, in the absence of MN, 
at concentrations up to 10,000 IU/ml. In contrast, Abs known 
to block the biological activity of human TNF-ot reversed 
the ADCI effect (Fig. 4), whereas another Ab specific for 
TNF-e~, although unable to act upon its biological function, 
did not. Finally, the specificity of the effect of anti-TNF-ot 
Abs was demonstrated by reversing the effect of anti-TNF-ot 
by addition of human rTNF-ot (Fig. 4). These results were 
reproducible in two separate experiments. In contrast, anti-IL-6 
Abs were ineffective. 

These experiments thus identified TNF-ot as a major com- 
ponent of ADCI. However, further experiments indicated 
that TNF-ot alone was unable to mimic ADCI, since rTNF-c~ 
(0.1-100 #g/ml) as well as combinations of rTNF-ol (100 
#g/ml) plus IFN-3' (100-30,000 IU) were unable to affect 
P.falciparum growth in direct assays (results not shown). An 
indirect effect of TNF-c~ upon MN was also excluded since, 
in the absence of antimalarial Abs, no growth inhibition could 
be observed in cocultures of P. filciparum with MN and f iNE  
These results, together with the above evidence that TNF 
is essential to achieve a positive ADCI effect, suggested that 
TNF may act in conjunction with another as yet unidentified 
factor. 

Discussion 

The relevance of the blood MN-mediated ADCI to clin- 
ical protection against P. falciparum malaria has been previ- 
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ously established by close in vivo/in vitro correlations (6). 
The present study offers several new findings on how ADCI 
operates and which are the triggering and the target stages. 
On the basis of our results, the following succession of events 
seems the most likely: At the time of schizont rupture, the 
contact between some merozoite surface component and 
cytophilic Abs bound to MN via their Fc fragment triggers 
the release of soluble mediators, which diffuse in the serum 
(or the culture medium) and which are able to block the di- 
vision of surrounding parasites at the uninucleated stage. 

Previous ADCI assays were performed in conditions in 
which the triggering stage, the target stages, and the im- 
mune effectors, MN and Abs, were all mixed, thus impeding 
any analysis of the succession of events. In the present study, 
this impediment was overcome by performing ADCI in two 
successive steps in two different culture vials, one used for 
MN stimulation and the other for the assessment of the 
resulting effect on the parasites. 

The low or nortrelevance of merozoite phagocytosis to para- 
site growth reduction in ADCI was supported both by the 
differential behavior of PMN versus MN in phagocytosis and 
ADCI assays and by the effect of stimulated MN superna- 
tants, which obviously rules out merozoite removal as an im- 
portant effector. This may sound surprising in view of the 
relatively high rates of merozoite uptake observed with both 
cells in the presence of Abs; however, phagocytosis was per- 
formed using purified merozoite suspensions without RBC 
and was expressed as the number of cells having phagocy- 
tosed at least one merozoite, not in numbers or proportion, 
of merozoites removed in a normal culture (or in vivo). There- 
fore, in the ADCI assay conditions, the relative proportion 
of merozoites taken up is probably insufficient to influence 
the final parasitemia. Nevertheless, merozoites, more or less 
intact schizonts, and parasite debris are observed in MN at 
the end of ADCI assays. These may represent only the subset 
of dead merozoites, i.e., those that have been unsuccessful 
in reinvading an RBC. Straightforward calculations also lead 
us to reject merozoite phagocytosis as a critical or major mech- 
anism in vivo. In this ADCI system, in which Abs appar- 
ently have no direct effect upon merozoite invasion (6) and 
in which the life span of merozoites outside RBC is short, 
phagocytes are simply not numerous enough compared with 
infected RBC to have any significant clearance effect. Most 
merozoites emerging from a rupturing schizont would prob- 
ably reinvade one of the numerous nearest RBC before coming 
in contact with a phagocyte. Based on these results, our view 
is that the ingestion of merozoites is an essential step to trig- 
gering ADCI, although it does not account for the observed 
reduction of the parasitemia. 

By using synchronized cultures for short periods of time 
(in which the percentage of each stage was assessed at the 
beginning and at the end of the experiment), it was possible 
to rule out the idea that the triggering antigens could be 
expressed on the host cell surface. Only those experiments 
in which the rupture of schizonts occurred led to efficient 
MN stimulation; the use of highly purified and thoroughly 
washed merozoites strongly suggested that the critical stage 

is the free merozoite. This finding is in agreement with in 
vivo observations performed three decades ago in the follow- 
up oflgG transfer experiments. I. A. McGregor noticed (26, 
and personal communication), as we did in our study (3), 
a variable delay from one individual to the other in the parasito- 
logical effect of the transferred IgG. He later related this delay 
to the expected time of schizont burst: "it would appear that, 
during serum therapy, the critical time for plasmodial sur- 
vival is around schizogony. If the parasite survives this period 
normal trophozoite growth seems to be assured until the next 
schizogony is approached. This suggests that antibody-antigen 
interaction is only effective as segmentation advances or when 
the asexual merozoite emerges from the protective cover of 
the red blood cell" (26). Considering that only clinical and 
parasitological data were available at this time, his premoni- 
tory view is remarkable. The fact that merozoites would bear 
the critical antigen(s) responsible for triggering effector de- 
fense mechanisms against ABS may give a clue to paradox- 
ical in vivo findings. In our previous study (3), we found 
that among 11 IgG treatments made in P.fakiparum-infected 
receivers, the percentage of parasite reduction obtained after 
transfer of IgG was directly related to the initial parasitemia 
(correlation coefficient r = 0.85). In other words, the higher 
the initial parasitemia, the stronger the effect of a given dose 
of IgG. In the case of a direct effect of IgG upon P. fakiparum 
invasion, one could expect the opposite: the higher the 
parasitemia, the larger the IgG consumption and the lower 
the reduction of parasite load. In contrast, if merozoites are 
needed to trigger IgG-armed MN, the larger the number 
of merozoites released, the stronger the triggering of MN 
would be (for similar Ab concentrations). 

The implication of the merozoite as the critical stage pro- 
vides also an understanding of previous contradictory results. 
Kzepczyk et al. (27) were unable to demonstrate ADCI in 
24-36-h assays in which synchronized cultures, starting at 
trophozoite stage, were used. In light of our findings, this 
absence of inhibition is understandable. Even if merozoite 
release occurred, it was too late at the time the experiment 
was stopped to enable one to observe a consecutive effect medi- 
ated by MN upon reinvaded parasites. Indeed, a full-cyde para- 
site development, starting from the time the mediator(s) are 
released, is needed to observe their effect upon parasite repli- 
cation. 

As the only extracellular stage in the erythrocytic cycle, 
merozoites have always been considered to bear valuable vac- 
cine candidate molecules, particularly at their membrane level, 
and immunization attempts with whole merozoites were 
among the most convincing (28). Our finding that purified 
preparations of free merozoites are able to trigger ADCI in- 
deed suggests that the critical antigens are constituents that 
would be accessible to Abs either on the merozoite mem- 
brane or at the apex (although the potential role of con- 
taminants such as RBC membranes, residual bodies, and an- 
tigens passively adsorbed onto merozoites cannot be excluded). 
Such indications in favor of the role of merozoites have ob- 
vious implications for vaccine research, as they would 
significantly restrict the range of malarial molecules to be 
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investigated. It might be recalled here that we have recently 
used ADCI as a screen to select antigens, irrespective of their 
stage or their location, that are potentially responsible for 
the induction of Abs involved in this mechanism. One mole- 
cule identified and partially sequenced turned out to be a novel 
constituent of merozoite membranes, termed MSP3 (8), the 
full sequence of which has been recently elucidated (29). This 
does not rule out the possibility that other merozoite surface 
molecules could be targets for Abs effective in ADCI, although 
it points to the merozoite stage as a critical one. 

In addition to being specific to merozoite antigen, the ac- 
tive Abs were also expected to be cytophilic for the effector 
cells. The involvement of Fc receptors in this Ab-dependent, 
MN-mediated effect was indirectly suggested by previous iso- 
type studies. We had previously observed that the balance 
between cytophilic and noncytophilic classes of Abs was critical 
both in the establishment of clinical protection and in the 
in vitro triggering of ADCI. Positive ADCI effects were only 
obtained using total IgG, for which cytophilic classes were 
significantly more abundant than noncytophilic classes (7). 
This indirect evidence gained from isotype and ADCI studies 
is clearly supported by the present results, which provide di- 
rect evidence for the involvement of Fc 3, receptors. This aside, 
the involvement of Fc~/RII, instead of KI, was somewhat 
unexpected. Indeed, Fc3'RI has been frequently implicated 
as a critical receptor involved in ADCC mechanisms against 
a number of targets (22). The Fc3,KII receptor, however, is 
almost as abundant on MN as is Fc3~RI, although it has been 
found to have a lower affinity to Ig, so the triggering of MN 
would require the involvement of at least dimers of IgG. This 
condition is clearly satisfied by a particulate antigen such as 
a merozoite. The marginal increase by IFN-'y of the ADCI 
intensity thus appears not to be related to its well-known 
induction of FcyKI (30), but rather to be the result of the 
IFN-3,-dependent increased ability of MN to release TNF, 
which is triggered by Fe~RII cross-linking (31-33). This view 
is also consistent with our finding that a 24-48-h delay after 
IFN-y stimulation was required to observe the increased ADCI 
effect, whereas Ec~RI increased expression would occur within 
8 h (Ravetch, J., personal communication). 

The fact that supernatants from ADCI assays strongly in- 
hibit parasite growth indicates that MN (triggered by 
merozoite antigens and the corresponding Abs, as discussed 
above) release soluble inhibitory mediator(s). Based on purely 
morphological studies, it remains difficult to identify the pre- 
cise mode of action of these soluble mediators. The main ob- 
servation was the accumulation of uninucleate altered para- 
sites. At the ultrastructural level, several degrees of parasite 
damage, leading from ribosomal aggregation up to trophozoite 
fissuration, were seen (34). However, it is remarkable that 
this effect seemed to target nuclear division. The accumula- 
tion of uninucleate picnotic parasites has been frequently 
reported during both in vivo and in vitro experiments, such 
as in primates during the recovery phase after an acute attack 
(21), and in a variety of circumstances in vitro, including in 
the presence of activated macrophages (20, 35). The 

uninucleate stage may, therefore, be a more susceptible and 
fragile one in the malaria life cycle. 

The essential requirement of TNF-ce in ADCI was estab- 
lished by the differential effect of two distinct anti-TNF-ot 
Abs with differing biological functions as well as by the re- 
versibility of the anti-TNF-oe effect in the presence ofrTNF-cr 
The in vitro observation that ffNF-oe alone is unable to 
mimic ADCI is in agreement with the in vivo observations 
that very high TNF-o~ levels during acute attacks are unable 
to control parasitemia (36,37) and that treatment of humans 
with anti-TNF does not lead to an increase in parasitemia 
(38). Our observations are reminiscent of other reports of 
TNF-dependent intraerythrocytic inactivation of the sexual 
stages of malaria parasites (39). In these studies, as in ADCI, 
TNF-mediated inactivation of the sexual stages was depen- 
dent on the presence of MN. The soluble mediators involved 
comprised both TNFoe and "complementary factors" as found 
here. However, in contrast to ADCI, the inactivation of sexual 
stage parasites was mediated, at least in part, by nitric oxide 
intermediates (40). TNF-c~ has also been implicated in the 
generation of crisis forms induced in mice by baciUo Calmette- 
Guerin and LPS (41, 42), although this effect was most likely 
mediated by FOR as shown by the effect of BHA. At present, 
little is known of the mode of action of TNF upon parasit- 
ized erythrocytes or of the identity of the second mediator, 
both here and in the study of sexual stages (39). In our two- 
step assay, the second culture was essentially devoid of leuko- 
cytes (none could be detected on control smears), a finding 
which tends to exclude the possibility of TNF-dependent stim- 
ulation of MN. Receptors to TNF have not so far been 
identified on the surface of uninfected RBC; however, the 
parasites cause profound modifications in the host erythro- 
cyte membrane, and it has been shown that large serum con- 
stituents, such as IgG, can attain the intraerythrocytic para- 
site (43). It has been suggested that, under certain conditions, 
TNF could interact and be integrated into artificial mem- 
branes independently of TNF receptors (44). IntraceUular in- 
jections of TNF also indicated that binding to its receptor 
is not essential to its tumoricidal activity (45). Indeed, the 
type of alterations seen in the parasite are compatible with 
those induced by TNF in tumor ceils. One possible explana- 
tion is that the unidentified second component is needed for 
TNF access to the intraerythrocytic parasite. 

Interestingly, we have observed that the effect of soluble 
mediators was incomplete or partially reversible after a 72-h 
incubation. This is consistent with the identification of the 
major role played by TNF, given the known lability of this 
cytokine. An incomplete or reversible effect is also consistent 
with in vivo findings that malaria is a chronic disease in which 
some parasites persist regardless of the levels of antimalarial 
Abs. The implication of TNF in the ADCI defense mecha- 
nism is supported by the recent observation of an abnormally 
high frequency of individuals from endemic areas harboring 
the TNF-2 promoter. Although this may result in homozy- 
gous individuals having an increased frequency of severe malaria 
(46), the gene may be selected by the evolutionary advantage 
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of heterozygous individuals with an improved defense against 
malaria because of this higher TNF production phenotype. 

Our study points to the implication of MN and TNF-ot 
as essential components of defense against intraerythrocytic 

parasites. The question of whether this reflects a common 
general mechanism to both asexual and sexual stages of the 
human malaria life cycle or not will require complementary 
investigations. 
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